

Solution Sheet 11

Exercise 11.1

Prove that a sequence of probability measures (μ_n) on $C([0, T]; \mathbb{R})$ is tight if and only if both

$$\lim_{\lambda \rightarrow \infty} \sup_{n \in \mathbb{N}} \mu_n(\{f : |f(0)| > \lambda\}) = 0 \quad (1)$$

and for all $\varepsilon > 0$,

$$\lim_{\delta \rightarrow 0} \sup_{n \in \mathbb{N}} \mu_n \left(\left\{ f : \max_{|t-s|<\delta} |f(t) - f(s)| > \varepsilon \right\} \right) = 0. \quad (2)$$

Hint: Recall the following version of Arzelá-Ascoli: The closure of a set $A \subset C([0, T]; \mathbb{R})$ is relatively compact if and only if both

$$\sup_{f \in A} |f(0)| < \infty$$

and

$$\lim_{\delta \rightarrow 0} \sup_{f \in A} \max_{|t-s|<\delta} |f(t) - f(s)| = 0.$$

Proof.

\implies : Assume that (μ_n) is tight, thus for every $\kappa > 0$ there exists a compact $K \subset C([0, T]; \mathbb{R})$ such that $\mu_n(K) > 1 - \kappa$ for all $n \in \mathbb{N}$. From the hint we have that for sufficiently large λ and for all $f \in K$, $|f(0)| < \lambda$. Therefore

$$\lim_{\lambda \rightarrow \infty} \sup_{n \in \mathbb{N}} \mu_n(\{f : |f(0)| > \lambda\}) \leq \sup_{n \in \mathbb{N}} \mu_n(K^C) < \kappa$$

and as $\kappa > 0$ was arbitrary, (1) is shown. Condition (2) follows similarly from the second part of the hint, as for all sufficiently small δ , all $f \in K$ and any given $\varepsilon > 0$, then

$$\max_{|t-s|<\delta} |f(t) - f(s)| \leq \varepsilon$$

so

$$\lim_{\delta \rightarrow 0} \sup_{n \in \mathbb{N}} \mu_n \left(\left\{ f : \max_{|t-s|<\delta} |f(t) - f(s)| > \varepsilon \right\} \right) \leq \sup_{n \in \mathbb{N}} \mu_n(K^C) < \kappa.$$

\Leftarrow : Assume (1) and (2). Fix $\kappa > 0$, with the intention of finding a compact K such that $\mu_n(K) > 1 - \kappa$ for all $n \in \mathbb{N}$. From (1) we choose a λ such that

$$\sup_{n \in \mathbb{N}} \mu_n(\{f : |f(0)| > \lambda\}) \leq \frac{\kappa}{2}$$

and from (2) a sequence (δ_j) approaching zero such that

$$\sup_{n \in \mathbb{N}} \mu_n \left(\left\{ f : \max_{|t-s|<\delta_j} |f(t) - f(s)| > \frac{1}{j} \right\} \right) \leq \frac{\kappa}{2^{j+1}}.$$

Now we define

$$K = \{f : |f(0)| \leq \lambda\} \cap \bigcap_{j=1}^{\infty} \left\{ f : \max_{|t-s|<\delta_j} |f(t) - f(s)| \leq \frac{1}{j} \right\}.$$

K is a countable intersection of closed sets hence it is closed, and by the hint it is compact. In addition, $\mu_n(K^C) \leq \sum_{j=1}^{\infty} \frac{\kappa}{2^j} = \kappa$, as required.

□

Exercise 11.2

Define \mathcal{F} to be the collection of step functions with compact support in \mathbb{R}_+ , that is, of functions f which can be written

$$f = \sum_{j=1}^n \lambda_j \mathbb{1}_{(t_{j-1}, t_j]}$$

for constants λ_j . Write

$$\mathcal{E}^f := \int_0^T f(s) dW_s.$$

Prove that the set $\{\mathcal{E}^f : f \in \mathcal{F}\}$ is total in $L^2(\Omega, \mathcal{F}_T, \mathbb{P})$ (that is, its span is dense).

Proof. See *Continuous Martingales and Brownian Motion*, Revuz and Yor, Page 198 Lemma 3.1. □

Exercise 11.3

For any give $F \in L^2(\Omega, \mathcal{F}_T, \mathbb{P})$, prove that there exists a unique predictable process H such that

$$F = \mathbb{E}(F) + \int_0^T H_s dW_s.$$

Proof. See *Continuous Martingales and Brownian Motion*, Revuz and Yor, Page 199 Proposition 3.2. □

Exercise 11.4

Let $T : \mathcal{X} \rightarrow \mathcal{X}$ be a measurable mapping, and $\xi : \Omega \rightarrow \mathcal{X}$ satisfy that $T\xi = \xi$ in law. Show that for every measurable function f , the discrete time process $(f(T^n \xi))_n$ is stationary.

Proof. Observe that

$$f(T^{n+1} \xi) = f(T^n(T\xi)) = f(T^n \xi) = f(\xi)$$

where equality holds in law due to the assumption. □